Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Virus Evol ; 8(2): veac089, 2022.
Article in English | MEDLINE | ID: covidwho-2087850

ABSTRACT

New variants of SARS-CoV-2 show remarkable heterogeneity in their relative fitness over both time and space. In this paper we extend the tools available for estimating the selection strength for new SARS-CoV-2 variants to a hierarchical, mixed-effects, renewal equation model. This formulation allows us to estimate selection effects at the global level while incorporating both measured and unmeasured heterogeneity among countries. Applying this model to the spread of Omicron in forty countries, we find evidence for very strong but very heterogeneous selection effects. To test whether this heterogeneity is explained by differences in the immune landscape, we considered several measures of vaccination rates and recent population-level infection as covariates, finding moderately strong, statistically significant effects. We also found a significant positive correlation between the selection advantage of Delta and Omicron at the country level, suggesting that other region-specific explanatory variables of fitness differences do exist. Our method is implemented in the Stan programming language, can be run on standard consumer-grade computing resources, and will be straightforward to apply to future variants.

2.
Nat Commun ; 12(1): 3674, 2021 06 16.
Article in English | MEDLINE | ID: covidwho-1275919

ABSTRACT

There is a consensus that mass vaccination against SARS-CoV-2 will ultimately end the COVID-19 pandemic. However, it is not clear when and which control measures can be relaxed during the rollout of vaccination programmes. We investigate relaxation scenarios using an age-structured transmission model that has been fitted to age-specific seroprevalence data, hospital admissions, and projected vaccination coverage for Portugal. Our analyses suggest that the pressing need to restart socioeconomic activities could lead to new pandemic waves, and that substantial control efforts prove necessary throughout 2021. Using knowledge on control measures introduced in 2020, we anticipate that relaxing measures completely or to the extent as in autumn 2020 could launch a wave starting in April 2021. Additional waves could be prevented altogether if measures are relaxed as in summer 2020 or in a step-wise manner throughout 2021. We discuss at which point the control of COVID-19 would be achieved for each scenario.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Communicable Disease Control/methods , Mass Vaccination , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Basic Reproduction Number , COVID-19/transmission , Calibration , Child , Child, Preschool , Communicable Disease Control/organization & administration , Hospitalization/statistics & numerical data , Humans , Mass Vaccination/organization & administration , Mass Vaccination/statistics & numerical data , Middle Aged , Models, Theoretical , Portugal/epidemiology , Vaccination Coverage , Young Adult
3.
Nat Commun ; 12(1): 1614, 2021 03 12.
Article in English | MEDLINE | ID: covidwho-1132071

ABSTRACT

The role of school-based contacts in the epidemiology of SARS-CoV-2 is incompletely understood. We use an age-structured transmission model fitted to age-specific seroprevalence and hospital admission data to assess the effects of school-based measures at different time points during the COVID-19 pandemic in the Netherlands. Our analyses suggest that the impact of measures reducing school-based contacts depends on the remaining opportunities to reduce non-school-based contacts. If opportunities to reduce the effective reproduction number (Re) with non-school-based measures are exhausted or undesired and Re is still close to 1, the additional benefit of school-based measures may be considerable, particularly among older school children. As two examples, we demonstrate that keeping schools closed after the summer holidays in 2020, in the absence of other measures, would not have prevented the second pandemic wave in autumn 2020 but closing schools in November 2020 could have reduced Re below 1, with unchanged non-school-based contacts.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Pandemics , SARS-CoV-2 , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Basic Reproduction Number/prevention & control , Basic Reproduction Number/statistics & numerical data , Bayes Theorem , COVID-19/transmission , Child , Child, Preschool , Cross-Sectional Studies , Female , Holidays , Hospitalization , Humans , Infant , Infant, Newborn , Male , Middle Aged , Models, Biological , Models, Statistical , Netherlands/epidemiology , Pandemics/prevention & control , Schools , Seroepidemiologic Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL